\(\int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx\) [488]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 33, antiderivative size = 222 \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {(9 A+B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{10 a^3 d}+\frac {(3 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{6 a^3 d}-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(6 A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {(9 A+B) \sqrt {\sec (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \sec (c+d x)\right )} \]

[Out]

-1/5*(A-B)*sec(d*x+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^3-1/15*(6*A-B)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d/(a+a*
sec(d*x+c))^2-1/10*(9*A+B)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a^3+a^3*sec(d*x+c))+1/10*(9*A+B)*(cos(1/2*d*x+1/2*c)
^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^3/d+1/6
*(3*A+B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2
)*sec(d*x+c)^(1/2)/a^3/d

Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3039, 4104, 3872, 3856, 2719, 2720} \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=-\frac {(9 A+B) \sin (c+d x) \sqrt {\sec (c+d x)}}{10 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {(3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{6 a^3 d}+\frac {(9 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {(A-B) \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{5 d (a \sec (c+d x)+a)^3}-\frac {(6 A-B) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{15 a d (a \sec (c+d x)+a)^2} \]

[In]

Int[((A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^3,x]

[Out]

((9*A + B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(10*a^3*d) + ((3*A + B)*Sqrt[Cos[c
 + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(6*a^3*d) - ((A - B)*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(
5*d*(a + a*Sec[c + d*x])^3) - ((6*A - B)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(15*a*d*(a + a*Sec[c + d*x])^2) - ((
9*A + B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(10*d*(a^3 + a^3*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3039

Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(
d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^{\frac {5}{2}}(c+d x) (B+A \sec (c+d x))}{(a+a \sec (c+d x))^3} \, dx \\ & = -\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}+\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (-\frac {3}{2} a (A-B)+\frac {1}{2} a (9 A+B) \sec (c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx}{5 a^2} \\ & = -\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(6 A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {\int \frac {\sqrt {\sec (c+d x)} \left (-\frac {1}{2} a^2 (6 A-B)+\frac {1}{2} a^2 (21 A+4 B) \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{15 a^4} \\ & = -\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(6 A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {(9 A+B) \sqrt {\sec (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \sec (c+d x)\right )}+\frac {\int \frac {\frac {3}{4} a^3 (9 A+B)+\frac {5}{4} a^3 (3 A+B) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{15 a^6} \\ & = -\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(6 A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {(9 A+B) \sqrt {\sec (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \sec (c+d x)\right )}+\frac {(3 A+B) \int \sqrt {\sec (c+d x)} \, dx}{12 a^3}+\frac {(9 A+B) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{20 a^3} \\ & = -\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(6 A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {(9 A+B) \sqrt {\sec (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \sec (c+d x)\right )}+\frac {\left ((3 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{12 a^3}+\frac {\left ((9 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{20 a^3} \\ & = \frac {(9 A+B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{10 a^3 d}+\frac {(3 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{6 a^3 d}-\frac {(A-B) \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(6 A-B) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {(9 A+B) \sqrt {\sec (c+d x)} \sin (c+d x)}{10 d \left (a^3+a^3 \sec (c+d x)\right )} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.61 (sec) , antiderivative size = 793, normalized size of antiderivative = 3.57 \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=-\frac {3 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{5 d (a+a \cos (c+d x))^3}-\frac {\sqrt {2} B e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{15 d (a+a \cos (c+d x))^3}+\frac {2 A \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{d (a+a \cos (c+d x))^3}+\frac {2 B \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{3 d (a+a \cos (c+d x))^3}+\frac {\cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\sec (c+d x)} \left (-\frac {2 (9 A+B) \cos (d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right )}{5 d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )-B \sin \left (\frac {d x}{2}\right )\right )}{5 d}+\frac {4 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (3 A \sin \left (\frac {d x}{2}\right )+B \sin \left (\frac {d x}{2}\right )\right )}{3 d}+\frac {4 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (3 A \sin \left (\frac {d x}{2}\right )+2 B \sin \left (\frac {d x}{2}\right )\right )}{15 d}+\frac {4 (3 A+B) \tan \left (\frac {c}{2}\right )}{3 d}+\frac {4 (3 A+2 B) \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{15 d}+\frac {2 (A-B) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{5 d}\right )}{(a+a \cos (c+d x))^3} \]

[In]

Integrate[((A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^3,x]

[Out]

(-3*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]
^6*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7
/4, -E^((2*I)*(c + d*x))])*Sec[c/2])/(5*d*E^(I*d*x)*(a + a*Cos[c + d*x])^3) - (Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/
(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(
c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2]
)/(15*d*E^(I*d*x)*(a + a*Cos[c + d*x])^3) + (2*A*Cos[c/2 + (d*x)/2]^6*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c
 + d*x)/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(d*(a + a*Cos[c + d*x])^3) + (2*B*Cos[c/2 + (d*x)/2]^6*Sqrt[
Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x])
^3) + (Cos[c/2 + (d*x)/2]^6*Sqrt[Sec[c + d*x]]*((-2*(9*A + B)*Cos[d*x]*Csc[c/2]*Sec[c/2])/(5*d) + (2*Sec[c/2]*
Sec[c/2 + (d*x)/2]^5*(A*Sin[(d*x)/2] - B*Sin[(d*x)/2]))/(5*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]*(3*A*Sin[(d*x)/
2] + B*Sin[(d*x)/2]))/(3*d) + (4*Sec[c/2]*Sec[c/2 + (d*x)/2]^3*(3*A*Sin[(d*x)/2] + 2*B*Sin[(d*x)/2]))/(15*d) +
 (4*(3*A + B)*Tan[c/2])/(3*d) + (4*(3*A + 2*B)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(15*d) + (2*(A - B)*Sec[c/2 + (d
*x)/2]^4*Tan[c/2])/(5*d)))/(a + a*Cos[c + d*x])^3

Maple [A] (verified)

Time = 5.52 (sec) , antiderivative size = 451, normalized size of antiderivative = 2.03

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (108 A \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-30 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+54 A \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 B \left (\cos ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 B \left (\cos ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-138 A \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-22 B \left (\cos ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+24 A \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 B \left (\cos ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+7 B \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 A -3 B \right )}{60 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(451\)

[In]

int((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+cos(d*x+c)*a)^3,x,method=_RETURNVERBOSE)

[Out]

1/60*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(108*A*cos(1/2*d*x+1/2*c)^8-30*A*(sin(1/2*d*x+1/2
*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+54*A
*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2
*c),2^(1/2))+12*B*cos(1/2*d*x+1/2*c)^8-10*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*Ell
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+6*B*cos(1/2*d*x+1/2*c)^5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*
(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-138*A*cos(1/2*d*x+1/2*c)^6-22*B*cos(1/
2*d*x+1/2*c)^6+24*A*cos(1/2*d*x+1/2*c)^4+6*B*cos(1/2*d*x+1/2*c)^4+3*A*cos(1/2*d*x+1/2*c)^2+7*B*cos(1/2*d*x+1/2
*c)^2+3*A-3*B)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c
)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 476, normalized size of antiderivative = 2.14 \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=-\frac {5 \, {\left (\sqrt {2} {\left (3 i \, A + i \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (3 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (3 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (\sqrt {2} {\left (-3 i \, A - i \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-3 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-3 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-9 i \, A - i \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (-9 i \, A - i \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (-9 i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-9 i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (9 i \, A + i \, B\right )} \cos \left (d x + c\right )^{3} + 3 \, \sqrt {2} {\left (9 i \, A + i \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, \sqrt {2} {\left (9 i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (9 i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, {\left (9 \, A + B\right )} \cos \left (d x + c\right )^{3} + 2 \, {\left (33 \, A + 2 \, B\right )} \cos \left (d x + c\right )^{2} + 5 \, {\left (9 \, A - B\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{60 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/60*(5*(sqrt(2)*(3*I*A + I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(3*I*A + I*B)*cos(d*x + c)^2 + 3*sqrt(2)*(3*I*A + I
*B)*cos(d*x + c) + sqrt(2)*(3*I*A + I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 5*(sqrt(
2)*(-3*I*A - I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(-3*I*A - I*B)*cos(d*x + c)^2 + 3*sqrt(2)*(-3*I*A - I*B)*cos(d*x
+ c) + sqrt(2)*(-3*I*A - I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(-9*I*A
- I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(-9*I*A - I*B)*cos(d*x + c)^2 + 3*sqrt(2)*(-9*I*A - I*B)*cos(d*x + c) + sqrt
(2)*(-9*I*A - I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqr
t(2)*(9*I*A + I*B)*cos(d*x + c)^3 + 3*sqrt(2)*(9*I*A + I*B)*cos(d*x + c)^2 + 3*sqrt(2)*(9*I*A + I*B)*cos(d*x +
 c) + sqrt(2)*(9*I*A + I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)))
 + 2*(3*(9*A + B)*cos(d*x + c)^3 + 2*(33*A + 2*B)*cos(d*x + c)^2 + 5*(9*A - B)*cos(d*x + c))*sin(d*x + c)/sqrt
(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

Sympy [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\frac {\int \frac {A \sqrt {\sec {\left (c + d x \right )}}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx + \int \frac {B \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}}{\cos ^{3}{\left (c + d x \right )} + 3 \cos ^{2}{\left (c + d x \right )} + 3 \cos {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**3,x)

[Out]

(Integral(A*sqrt(sec(c + d*x))/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x) + Integral(B*cos
(c + d*x)*sqrt(sec(c + d*x))/(cos(c + d*x)**3 + 3*cos(c + d*x)**2 + 3*cos(c + d*x) + 1), x))/a**3

Maxima [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^3, x)

Giac [F]

\[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{3}} \,d x } \]

[In]

integrate((A+B*cos(d*x+c))*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \cos (c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^3} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^3} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + a*cos(c + d*x))^3,x)

[Out]

int(((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2))/(a + a*cos(c + d*x))^3, x)